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Effects of changes in the chain conformation on the kinetics of order-disorder transitions
in block copolymer melts

Toshihiro Kawakatsu
Department of Physics, Faculty of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-03, Japan

~Received 23 December 1996!

The effects of long-range dynamical correlation in the kinetics of order-disorder transitions of symmetric
block copolymer melts are investigated on the basis of the time-dependent Ginzburg-Landau model that was
extended in such a way that the information on the chain conformation is incorporated using the path-integral
formalism. A simplified equation of motion for the order parameter is derived by a perturbation expansion of
the chain conformation around its Gaussian conformation. A series of computer simulations are performed to
show the importance of the effects of the changes in the chain conformation on the kinetics of order-disorder
transition of block copolymer melts.@S1063-651X~97!04309-2#

PACS number~s!: 82.20.Wt, 64.60.Ht, 83.10.Nn
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I. INTRODUCTION

Research on complex fluids, such as polymers, emulsi
and colloidal suspensions, is now one of the most ac
fields in computational condensed-matter physics@1,2#. A
common feature of these materials is the existence of m
scopic structures that are much larger than the microsc
atomic length scale but much smaller than the macrosc
length scale. In the microscopic length scale, the mater
are described using discrete atomic or molecular degree
freedom. On the other hand, in the macroscopic length sc
the materials are treated as continuum media. The len
scale of the various supermolecular structures in comp
fluids is located between these two limiting length scal
The main difficulty in performing computer simulations
complex fluids using the microscopic description com
from the extremely long characteristic time scales of the
laxation of these mesoscopic structures. This difficulty
quires us to construct models that are based on the m
scopic or macroscopic level rather than the microsco
level. A typical example of mesoscopic models of comp
fluids is the Ginzburg-Landau model, where the mesosco
structures are described by coarse-grained density varia
or hydrodynamic variables@3,4#. There seems to be a ga
between the microscopic approaches, such as the molec
dynamics method, and the above-mentioned mesoscopic
proaches. The purpose of the present study is to try to br
such a gap by incorporating microscopic information into
mesoscopic models.

II. MODEL

A. Basic equations

As a typical example of problems of complex fluids, w
consider phase separation dynamics or dynamics assoc
with the order-disorder transitions of polymer or block c
polymer systems. The block copolymer is a polymer tha
composed of two or more different types of polymer chai
Such a molecular structure assigns the block copolymer
amphiphilic nature and therefore the block copolymer pla
the role of a surfactant in binary mixtures@4#. The time-
561063-651X/97/56~3!/3240~11!/$10.00
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dependent Ginzburg-Landau~TDGL! model of phase sepa
ration of a polymer blend or a block copolymer melt is giv
by the equation of motion@5,6#

]

]t
fK~r ,t !5(

K8
E dr 8L̂KK8~r ,r 8!

dF

dfK8~r 8!
, ~1!

where fK(r ,t) is the local number density ofK-type seg-
ments, K being the index of each component.F and
L̂KK8(r ,r 8) are the total free energy and the kinetic coef
cient, respectively, both of which in general depend on
conformation of the polymer chains.

On the other hand, the conformation of a tagged chain
K type can be calculated within the mean-field approxim
tion ~MFA! using the path-integral formalism@7–10#

QK~t,r ;t8,r 8![ (
all conformations

exp@2b~H0
~K !1H1

~K !!#,

~2!

whereb51/T is the inverse temperature andQK(t,r ;t8,r 8)
is the joint probability that thetth segment and thet8th
segment of aK-type chain are found at positionsr and r 8,
respectively. The right-hand side is a sum of Bolt
mann factors for all possible chain conformations und
some external constraints, whereH0

(K) is the Hamiltonian of
an ideal Gaussian chain ofK type andH1

(K) is the interaction
potential between the monomers of the tagged chain oK
type and the self-consistent external field imposed on
monomers.H0

(K) andH1
(K) are usually taken in the forms@11#

H0
~K !5E

0

NK
dtF dT

2b2S dr ~K !~t !

dt D 2G , ~3!

H1
~K !5E

0

NK
dtVK„r ~K !~t !…. ~4!

HereNK is the total number of segments in aK-type chain,b
is the Kuhn statistical length,r (K)(t) is the position of the
3240 © 1997 The American Physical Society
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56 3241EFFECTS OF CHANGES IN THE CHAIN . . .
tth segment of aK-type chain,VK(r ) is the external field
imposed on theK-type segment at positionr , andd is the
dimensionality of the system that is assumed to be 3 in
following, except for the computer simulations. It is useful
show that the path integralQK obeys the diffusion equation
@7–10#

]

]t
QK~t,r ;t8,r 8!5Fb2

6
¹22bVK~r !GQK~t,r ;t8,r 8!.

~5!

As the quantityQK is a sum of contributions from al
possible polymer conformations~which can be identified
with possible paths of a quantum particle moving in a pot
tial VK), QK is called the path integral. Then the free ener
F and the kinetic coefficientL̂KK8 in Eq. ~1! are calculated
using this path integralQ. The free-energy functional a
equilibrium is given by@10#

F52T(
K

lnF E drE dr 8QK~0,r ;N,r 8!G1W@$fK~r !%#

2(
K

E dr F dW

dfK~r !
fK~r !1U~r !fK~r !G , ~6!

whereW@$fK%# is the interaction energy between segme
andU(r ) is the Lagrange multiplier for the incompressibili
condition

(
K

fK~r !5f05
1

bd 5const. ~7!

On the right-hand side of Eq.~6!, the first and the secon
terms are the conformational entropy of the chains and
direct segment-segment interaction, respectively. The
term is the correction for the double counting of t
segment-segment interaction. This path-integral formal
within the MFA has been used widely and successfully
study equilibrium phase-separated structures in poly
blends and block copolymer systems@8–10,12,13#. A diffi-
culty of this approach comes from the heavy computer
mands that are necessary in evaluating the path integral

In the vicinity of the critical point of the phase separati
or the order-disorder transition point, there is an appro
mated method to evaluate the free energyF by expanding it
into a power series in the density fields$fK(r )% and by
relating the expansion coefficients to the density-density c
relation functions that can be calculated using the rand
phase approximation~RPA! @14,15#. As shown by Fredrick-
son and Helfand@16# and by Fried and Binder@17,18#, the
use of the RPA is restricted to the weak segregation reg
~close to the critical point! of systems composed of lon
chains. Unless the above conditions are satisfied, correc
to the RPA cannot be negligible. Thus, in order to give
quantitative prediction of the phase-separated struct
within the MFA, we should restrict ourselves to one of t
following situations:~i! The chain length is sufficiently long
and the system is close enough to the critical point so
both the use of the RPA and the power-series expansio
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the free energy with respect to the density field are valid
~ii ! the system is far from the critical point and the cha
length is long enough so that the path-integral descript
and the use of the Gaussian statistics~3! is justified. In this
case, a direct numerical evaluation of the path integral~2! is
necessary.

Apart from the equilibrium properties, the dynamic pro
erties of phase-separation processes are also interesting
important in predicting the metastable phase-separated
main structures that contain many defects and in predic
the macroscopic rheological properties. In this case, the
formation on the chain conformation can be incorporated
combining the dynamical equation of motion~1! with the
free-energy functional calculated with the path integral~6!.
Such a trial has started only recently@19–22#. However, in
the dynamical modeling, a careful treatment of the kine
coefficientL̂KK8 is required. As the kinetic coefficient con
tains effects of segment diffusion, the hydrodynamic inter
tion, and other dynamical processes, it is very complex.
dynamical simulations of the phase-separation processe
ing the Ginzburg-Landau-type models, the kinetic coefficie
L̂KK8 almost always has been approximated by a local
fusion process whereL̂KK8 is replaced byL¹d(r2r 8)¹8, L
being the diffusion constant@23–25#, or approximated by a
sum of the local diffusion and a hydrodynamic correlati
that is described using the so-called Oseen tensor@26#. How-
ever, basically the kinetic processes such as segment d
sion and hydrodynamic processes are affected by the cha
in the conformation of constituent polymer molecules. Th
leads to a nonlocal kinetic coefficientL̂KK8 that depends on
the chain conformation through the path integ
Q(t,r ;t8,r 8).

In order to incorporate such nonlocal effects in the kine
coefficient into the model, one possible way is to use d
namical models of coarse-grained multichain systems an
perform Monte Carlo or molecular-dynamics simulatio
@27#. In these models, the system is composed of m
chains, each of which is treated as a set of many beads
nected by chemical bondings, and therefore the models
rather on the microscopic basis than the Ginzburg-Land
type continuum models. The Monte Carlo simulation
Sariban and Binder showed that the changes in the c
conformation do take place in the course of the phase s
ration of a binary polymer mixture in a common solve
@27#. On the other hand, on the level of the Ginzbur
Landau-type descriptions, a model of nonlocal kinetic co
ficients has been proposed assuming biased reptation dy
ics @5,6#, where the chains are allowed to diffuse only alo
its contour because the chains cannot cross each other.
assumption leads to a picture of long-range hopping o
segment from one end of the chain to the other end.~In the
case of a diblock copolymer, a segment at one end is
garded to jump to the junction point and simultaneously
segment at the junction point is regarded to jump to the ot
end.! This picture is, of course, too simple to describe t
chain dynamics in real polymer systems, especially in a m
state where the reptation motion should be accompanied
relaxation of fluctuations in a segment density distributio
Another difficulty of this picture is the fact that, in the cas
of a strongly segregated block copolymer melt, the junct
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3242 56TOSHIHIRO KAWAKATSU
points are almost pinned at interfaces, which leads to
extremely slow reptation motion compared to that assum
in the above picture@28#. However, such a simple picture
still a useful and tractable starting point in examining ho
much the change in the chain conformation is importan
the dynamics of phase-separation of polymer systems.

Only very few numerical works have been done on su
phase-separation dynamics on the basis of the TDGL-t
description with nonlocal kinetic coefficient that depends
the chain conformation. Kawasaki and Koga@29# simulated a
phase-separation process of binary polymer blend where
nonlocal kinetic coefficientL̂KK8(r2r 8) is assumed to be
constant within a certain range that models a nondeform
Gaussian chain. However, the assumption of nondeform
chains is not justified for chains that locate in the interfac
region or in the microphase-separated block copolymer
tems @8,27#. In such regions, the chains are elongated
compressed by the interaction between segments and b
constraint force originating from the incompressibility co
dition.

The aim of the present study is to estimate the effects
changes in the chain conformation on the phase-separa
dynamics and to show the importance of incorporating
information on the chain conformation into mesoscopic m
els such as the TDGL model described by Eq.~1!, where
both the kinetic coefficientL̂KK8 and the free energyF de-
pend on the chain conformation through the path integraQ.
As the self-consistent field inH1

(K) depends on the loca
monomer densities$fK(r )%, Eqs. ~1! and ~2! form a set of
self-consistent equations. The dependence of the free en
on the chain conformation will be reported elsewhere@21,22#
and we will concentrate on the kinetic coefficient in t
present study.

Note that there is a similarity between the above form
lation for polymer systems and the formulation adopted
the first-principles molecular-dynamics simulations f
atomic systems, which is known as the Car-Parrinello~CP!
method@30#. In the CP method, the density distributions
valence electrons are obtained at every simulation time
by solving a self-consistent equation for the wave functio
of the electrons that are equilibrated in the potential exe
by the atomic ion cores. In this CP method, the ion cores
treated as classical objects, while the electrons are treate
quantum objects. In our polymer formulation, the path in
gral Q in Eq. ~2! corresponds to the wave function of th
electrons in the CP method and the segment density di
butions$fK% correspond to the classical degrees of freedo
respectively.

B. Perturbation expansion

When one wants to simulate the temporal evolution of
phase separation of a polymer mixture taking the effects
the conformational change of the constituent polymer cha
into account, one should solve the self-consistent set of e
tions ~1! and~2! directly, by a numerical integration metho
Such a numerical procedure requires enormous comp
power and is not an easy task even for a two-dimensio
system. Thus it is important to estimate the effects of
conformational changes before performing the full numeri
simulation of Eqs.~1! and~2!. In the present study, we adop
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a perturbation expansion of the chain conformation arou
the Gaussian conformation as a reference state.

It is well known for melts of sufficiently long polyme
chains that the polymer chain conformation is Gauss
when there are no density fluctuations and composition fl
tuations. Such a Gaussian conformation is actually a solu
of Eq. ~5! when there is no external fieldVK . As the confor-
mational change of the polymer chain from its Gaussian c
formation is caused by the external fieldVK , the conforma-
tional change can be treated as a series of perturba
expansion with respect toVK that is related to the segmen
density distribution$fK%. Here we show such a perturbatio
expansion using a symmetric block copolymer melt as
example.

We will adopt the RPA in order to evaluate the expans
coefficients of the above-mentioned perturbation expans
As discussed in the Sec. II A, the use of the RPA becom
unreliable in the short chain limit@16–18#. Due to this prob-
lem, the following treatment should be restricted to the c
with relatively long chain length and close enough to t
critical point.

Let us consider anA-B-type symmetric block copolyme
melt that is composed ofN/2 segments ofA type andN/2
segments ofB type. Each segment is labeled by an indext
so that 0<t<N/2 corresponds to theA subchain and
N/2<t<N corresponds to theB subchain, respectively. Fol
lowing Ref. @6#, the nonlocal kinetic coefficientL̂KK8(r ,r 8)
in Eq. ~1! is related to the two segment correlation functio

Pt,t8~r ,r 8!5n0^d„r2r ~t!…d„r 82r ~t8!…;$fK~r !%&, ~8!

wheren0 is the total number of chains in the system,r (t)
and r (t8) are the positions oftth and t8th segments of a
tagged chain, and the average^* ;$fK(r )%& is the canonical
average under the condition that the density distributions
fixed to $fK(r )%.

Using Pt,t8(r ,r 8), the TDGL equation~1! is rewritten as

]

]t
fK~r !52

Dc

T (
K8

E dr 8P̄KK8~r ,r 8!
dF

dfK8~r 8!
, ~9!

whereDc is the diffusion constant along the chain due to t
reptation motion,T is the temperature, andP̄KK8(r ,r 8) is
defined by

P̄KK8~r ,r 8!5E
vK

dtE
vK8

dt8
]2

]t]t8
Ptt8~r ,r 8!, ~10!

where the integral*vK
dt is taken over theK-type subchain

of the tagged chain. In deriving Eq.~9!, we assumed biase
reptation motion of the chains@5,6#.

The incompressibility condition~7! introduces a Lagrange
multiplier U(r ) and dF/dfK in Eq. ~9! should be replaced
by dF/dfK1U. Eliminating this Lagrange multiplierU(r )
using the incompressibility condition~7!, we obtain for melts
of A-B binary systems~includingA-B-type block copolymer
melts!
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56 3243EFFECTS OF CHANGES IN THE CHAIN . . .
]

]t
X~r ,t !5

2Dc

T E dr 8L~r ,r 8!
dF

dX~r 8!
, ~11!

where

X~r ,t !5fA~r ,t !2fB~r ,t ! ~12!

is the order parameter of the phase separation and

dF

dX
5

dF

dfA
2

dF

dfB
~13!

is the chemical potential difference of anA segment and aB
segment, which plays the role of the thermodynamic fo
for the order parameter. For anA-B symmetric block copoly-
mer melt,L is given in the Fourier space as

L~q,q8!5
1

(
K

(
K8

P̄KK8

~ P̄AAP̄BB2 P̄ABP̄BA!. ~14!

For a symmetricA-B block copolymer of lengthN, P̄KK8
defined by Eq.~10! is simplified to

P̄AA5P001P~N/2!~N/2!2P0~N/2!2P~N/2!0 ,

PAB5P0~N/2!1P~N/2!N2P0N2P~N/2!~N/2! ,

PBA5P~N/2!01PN~N/2!2PN02P~N/2!~N/2! ,

PBB5P~N/2!~N/2!1PNN2P~N/2!N2PN~N/2! . ~15!

The above set of$ P̄KK8% describes the fact that within th
level of our assumption of biased reptation of a diblock c
polymer chain, one end segment (t50 or t5N) can be
regarded to hop to the position of the junction segm
(t5N/2) and the junction segment hops to the other e
position (t5N or t50) due to the sliding motion of the
chain along its contour.

As a lowest-order approximation, we can use Gauss
distribution of the chain conformation. Within this approx
mation, the Fourier transform ofL(r ,r 8) leads to@6#

L0~q,q8!5
n0~2p!d

2V
$4hN/2~q!2hN~q!%d~q1q8!,

~16!

whereV is the system volume andht(q) is defined for the
three-dimensional system as

ht~q!512exp~2 1
6 tb2q2! ~17!

or in the real space as

ht~r !5d~r !2S 3

2pb2t D 3/2

expF2
3ur u2

2b2t
G . ~18!
e

-

t
d

n

Under the existence of the inhomogeneity of the dens
distribution, the block copolymer chains are deformed a
therefore the chain conformation deviates from the Gaus
conformation. We incorporate such an effect by a pertur
tion expansion. For a tagged block copolymer chain in
external field induced by the surrounding segment distri
tions that are described by the order parameterX(r ), the path
integral defined by Eq.~2! is expressed as

QK~t,r ;t,r 8!5E d$r ~t!%exp@2b~H01H1!#, ~19!

whereH0 andH1 are now rewritten as

H05E
0

N

dtF dT

2b2S dr ~t!

dt D 2G

H15E
0

N/2

dt@wA„r ~t!…1UA„r ~t!…#

1E
N/2

N

dt@wB„r ~t!…1UB„r ~t!…#. ~20!

HerewK(r ) is the segment-segment direct interactions giv
by

wK~r !52
z

2
@eKAfA~r !1eKBfB~r !#

52
z

2
~eKA2eKB!X~r !1const ~21!

and UA(r ) and UB(r ) are the Lagrange multipliers comin
from the constraint that the density profilesfA andfB sat-
isfy the relations

fA~r !1fB~r !5f0 , fA~r !2fB~r !5X~r !, ~22!

wheref0 is the total segment density that is assumed to
constant and the order parameterX(r ) is regarded as an ex
ternal parameter to which the segment distribution calcula
with the path integral~19! should be adjusted. Using thes
constraints, we can determine the Lagrange multipliersUA
andUB . Then the expression ofH1 leads to

H152
1

2bE0

N/2

dtE dr 8G„r ~t!2r 8…X~r 8!

1
1

2bEN/2

N

dtE dr 8G„r ~t!2r 8…X~r 8!

5E
0

N

dt f ~t!c„r ~t!…, ~23!

where we have defined



r-
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c~r !52
1

2bE dr 8G~r2r 8!X~r 8!, ~24!

f ~t!5H 1 ~0<t<N/2!

21 ~N/2<t<N!.
~25!

G(q) is the Fourier transform of the two-point density co
relation function, whose explicit expression can be obtain
within the RPA as
a

si
r

u
ck

u
ffi
-

er
w

a
de
-

d

G~q!5
bdx2

N~x14e2x/22e2x23!
, ~26!

wherex5(1/6)Nb2uqu2 and the factorbd is the inverse of the
total segment number density~7!. Using the path integra
~19!, one can calculatePtt8(r ,r 8) in Eq. ~8! by
Ptt8~r ,r 8!5n0

E d$r ~t!%d„r ~t!2r …d„r ~t8!2r 8…exp@2b~H01H1!#

E d$r ~t!%exp@2b~H01H1!#

. ~27!
he
n of
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In order to evaluate Eq.~27! directly, we have to rely on
an extensive numerical calculation. Here we instead exp
Eq. ~27! in a power series inH1 and retain terms up to
second order. As the details of such a perturbation expan
are described in the Appendix, here we summarize the
sults. The zeroth-order terms of the expansion give Eq.~16!.
We find that the first-order terms vanish exactly. This is d
to the special situation of our system of symmetric blo
copolymers~see the Appendix!. Then the first nontrivial con-
tribution arises from the second-order terms. This proced
leads us to a complicated expression for the kinetic coe
cientL(r ) in Eq. ~11!, whose explicit expression in the Fou
rier space is given in Eq.~A12!.

In order to obtain an equation of motion for the ord
parameter that is convenient for computer simulations,
expand the perturbation terms inL(q) in a power series in
wave numbers anticipating that the perturbation terms
dominated by the long-wavelength fluctuations in the or
parameterX(r ). Retaining the leading contributions, we fi
nally obtain the modified TDGL equation

]

]t
X~r ,t !52

2Dc

T H S 12
1

2
b2^H1

2&0D E dr 8L0~r2r 8!

3
dF

dX~r 8!
2

6b2dn0

V
¹•F ua~r !u2¹

dF

dX~r !G J .

~28!

In this equationL0(r2r 8)5L0(r ,r 8) is the Fourier inverse
transform ofL0(q,q8) defined in Eq.~16! that is the kinetic
coefficient for undeformed Gaussian chains,ht(r ) is defined
in Eq. ~17!, and

a~r !5
1

~2p!dE dqe2 iq•r@2 iqV~q!X~q!#

5¹E dr 8V~r2r 8!X~r 8!, ~29!
nd

on
e-

e

re
-

e

re
r

whereV(r ) is defined by

V~r !5
1

~2p!dE dq
1

q2 e2 iq•r. ~30!

The quantity^H1
2&0 is defined in Eq.~A5! and is now ex-

pressed in the same level of approximation as

^H1
2&05S 1

2b D 2 144

Nb222dV

1

~2p!dE dq
1

q2 uX~q!u2

5S 1

2b D 2 144

Nb222dV
E drE dr 8V~r2r 8!X~r !X~r 8!.

~31!

Equation~28! is our basic equation used in the analysis in t
present work. It can be regarded as a gradient expansio
the original TDGL equation~11!.

III. COMPUTER SIMULATION

A. Model equations for computer simulations

In this section we investigate the effects of the conform
tional changes on the phase-separation dynamics of a d
A-B-type symmetric block copolymer system using co
puter simulations on the modified TDGL equation~28!. In
the present study, we focus our attention on the kinetic
efficient L. In order to separate the effects of the conform
tional changes in the kinetic coefficient from the other
fects, we neglect the hydrodynamic effects@26# and
viscoelastic effects@31#. For the same reason we adopt
conventional free energy model for the block copolym
melt that is split into two contributions@15,24,25,32#

F5FS1FL , ~32!

whereFS andFL are the short-range part and the long-ran
part of the free energy. The short-range part is usually
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56 3245EFFECTS OF CHANGES IN THE CHAIN . . .
sumed to be of the Flory-Huggins type or the Ginzbu
Landau~GL! type. Here we adopt the GL type model give
by

FS5
1

bE dr FD

2
u¹X~r !u22

c

2
X2~r !1

u

4
X4~r !G , ~33!

whereD, c, andu are positive constants. The long-range p
is calculated by applying the RPA to Eq.~6! and retaining
only the small wave-number contributions. Its explicit e
pression for a symmetric block copolymer melt is given
@15#

FL5
1

2b

36

b22dN2E drE dr 8V~r2r 8!X~r !X~r 8!, ~34!

whereV(r ) is defined in Eq.~30!.
In order to transform the equation of motion into a no

dimensional form, we take the units of timet0, length l 0,
energy e0, and the order parameterX0 as t05V/n0Dcc,
l 05AD/c[j, e051/b, andX05 l 0

dAc/u, respectively. Here
j corresponds to the correlation length of the phase sep
tion apart from a factorA2 andX0 is the difference between
the number ofA segments and the number ofB segments in
a unit volume ofjd in a bulk domain in the equilibrium state
The correlation lengthj is determined by the segmen
segment interaction parameters and is the same order a
interfacial thickness. Note thatj is different from the char-
acteristic length of the final microphase separated struc
such as the lamellar spacing. Using these units, we obta

]

]t
X~r ,t !52~12 1

2 ^H1
2&0!E dr @4hN/2~r2r 8!

2hN~r2r 8!#m~r !1C1¹•@ ua~r !u2¹m~r !#,

~35!

where all the quantities are now nondimensional and

hN~r !5d~r !2S d

12p~Rg /j!2D d/2

expF2
dur u2

12~Rg /j!2G ,

hN/2~r !5d~r !2S d

6p~Rg /j!2D d/2

expF2
dur u2

6~Rg /j!2G ,

m~r !52¹2X~r !2X~r !1@X~r !#3

1C2E dr 8V~r2r 8!X~r 8!,

a~r !5¹E dr 8V~r2r 8!X~r 8!,

^H1
2&05C3E drE dr 8V~r2r 8!X~r !X~r 8!, ~36!
-

t

-

ra-

the

re

where the dimensionalityd is set equal to 2 in the simula
tions. The coefficients are defined by

C15FX0S b

j D dG2

, C25S Rg

j D 22 bd12

c
,

C356C1S Rg

j D 22 jd

V
, ~37!

whereRg5ANb2/6 is the gyration radius of the chain in it
Gaussian state. Here we note thatC1 corresponds to the dif-
ference between the volume fraction of theA segments and
that of theB segments in the equilibrium composition and
therefore less than 1. The parameterC2 determines the
lamellar domain spacing in units of the correlation lengthj.
Thus the three dimensionless parametersC1, C2, andC3 can
be fixed using the experimental data on the segment volu
fraction of the equilibrium composition, the equilibrium
lamellar spacing divided byj, and the gyration radius di
vided byj, respectively.

B. Simulation techniques

We solved the equation of motion~35!–~37! for a two-
dimensional system by numerical integration using the st
dard Euler difference scheme. The integral on the right-h
side of Eq.~35! extends over a long-range due to the lon
range nature of the kinetic coefficientL0(r ). As this convo-
lution integral is transformed into a simple multiplication
the Fourier space, it is evaluated in the Fourier space at e
time step using the fast Fourier transform~FFT! method
@26#. This method is also applicable for systems with hyd
dynamic interactions@26#. Therefore, the present simulatio
program is very easily extended to the systems with hyd
dynamic interactions by simply adding the Oseen tenso
the kinetic coefficientL0. The same technique is also use
for evaluating Eqs.~29! and ~31!. We neglected the differ-
ences in the model parameters between the two-dimensi
system~2D! and the three-dimensional system. Although t
functionV(r ) takes different functional forms in 2D and 3D
systems, it does not present any difficulty to the pres
simulation becauseV is evaluated only in the Fourier spac
where there is no difference in the functional form ofV(q)
between 2D and 3D systems.

We performed computer simulation runs on the order
process~microphase-separation process! from a uniformly
mixed state of the block copolymer. We set the parame
C150.12, C250.01(Rg /j)22, C356C1(Rg /j)22(jd/V),
and Rg /j52.0, 3.0, 4.0, and 5.0, respectively. This sele
tion of the parameterC1 corresponds to the weak
segregation regime. The system is divided into 1283128
square meshes with a mesh widthj51.0 and we impose a
periodic boundary condition on each side of the system. T
time mesh widthDt is taken asDt50.01 for the system with
Rg /j52.0 andDt50.001 for those withRg /j.2.0. Then
the equation of motion was integrated up tot5100.0. The
initial values of the order parameterX(r ) at mesh points are
generated using independent normal random numbers
mean 0 and standard deviation 0.1. In order to get stat
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cally accurate data, we performed ten independent runs f
different initial conditions.

C. Kinetics of lamellar ordering from a uniformly mixed state

The effects of the conformational change of the cha
i.e., the perturbation terms in Eq.~35!, were investigated by
performing two types of simulation runs for each parame
set: one is a simulation on the full equation of motion~35!
and the other is a simulation where the perturbation term
Eq. ~35!, i.e., the terms containinĝH1

2&0 and C1, are
dropped. In Fig. 1 we show a typical picture of the syst
calculated using the full equation of motion including t
perturbation terms. The picture is a snapshot of the sys
with Rg /j52.0 taken att550.0. The black regions and th
white regions correspond to theA domains andB domains of
a lamellar structure, respectively. The simulation without
perturbation terms shows a similar domain structure.

The ordering process is characterized by the temp
evolution of the characteristic wave number of the dom
structure that is defined by

^k~ t !&5E
0

`

kS~k!dkY E
0

`

S~k!dk, ~38!

FIG. 1. Picture of the segment density distribution obtained b
simulation on the full equation of motion including perturbatio
terms. The system is divided in a 1283128 square mesh with a
nondimensional unit. The parameters areC150.12, C2

50.01(Rg /j)22, andRg /j52.0. The time ist550.0.
m

,

r

in

m

e

al
n

whereS(k) is the structure function given by

S~k!5^uX~k!u2&, ~39!

which is a function ofk[uku for isotropic systems. In Fig. 2
temporal evolution of the characteristic wave number^k(t)&
is shown as a function of time, where the chain length
taken to beRg /j52.0, 3.0, 4.0, and 5.0 in Figs. 2~a!, 2~b!,
2~c!, and 2~d!, respectively. In these figures the results
simulations using the equation of motion without the pert
bation terms are shown by solid curves, while those with
full equation of motion including the perturbation terms a
shown by dashed curves. We observe a non-negligible c
tribution from the perturbation terms that accelerates the
dering process, especially in the early stage. We also no
that the contribution of the perturbation terms becom
larger when the chain length becomes longer. Here it sho
be noted that the equilibrium lamellar domain sizes of th
four cases~a!–~d! are different because of the difference
the chain lengths. Moreover, the unit time sca
t05V/n0Dcc is also different for Figs. 2~a!–2~d! as it is a
decreasing function of the chain length. Thus a direct qu
titative comparison of the data shown in Figs. 2~a!–2~d! is
not appropriate.

One may think that the perturbation effects only chang
the rate of the ordering process and the temporal chang
the characteristic wave number^k(t)& is described by a
single scaling function by appropriately choosing the unit
time. We show in Fig. 3, the same data as in Fig. 2~a!, but

a

FIG. 3. Same data as in Fig. 2~a!, but the unit of time for the
dashed curve~the case with the perturbation terms! is properly
changed so that the asymptotic behaviors of the two curves fit e
other. Obviously, the curves do not fall onto a single master cu
in the early stage.
of
in

on
-

in
FIG. 2. Comparison of the temporal change
the characteristic wave numbers of the doma
structures for the case without the perturbati
terms~solid curve! and the case with the pertur
bation terms~dashed curve! for various values of
the chain length:~a! Rg /j52.0, ~b! Rg /j53.0,
~c! Rg /j54.0, and~d! Rg /j55.0, respectively.
The other parameters are the same as those
Fig. 1.
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FIG. 4. Comparison of the temporal change
the characteristic wave numbers of the doma
structures under an external shear flow. So
curves show the case without the perturbati
terms and the dashed curves show the case w
the perturbation terms. The chain length is fixe
to beRg /j52.0. The frequency of the oscillation
of the shear flow is changed as~a! v51.0, ~b!
v50.5, ~c! v50.2, and~d! v50.1, respectively,

keeping the parameterġ050.1 constant.
m
e

he
tw
rl
n

tiv
th

ld
m
e

en
d
e
u

e
on
w

i
d

p

n
-

c-
.

s is
are

.
dic

am-
s
ac-
en-
with

tur-

be-
lax-
ith
-

he
-
ms
in
llel

ces
uc-
s in
ear
lax

ec-
e a
the time scale for the case with the perturbation ter
~dashed curve! is extended by a factor 1.70 so that th
asymptotic long-time behavior of the solid curve and t
dashed curve fit each other. It is obvious that these
curves do not fall onto a single master curve in the ea
stage. Thus the effects of the perturbation terms are
merely changing the time scale but changing the qualita
behavior of the ordering process in the early stage to
intermediate stage.

D. Kinetics of lamellar ordering under a shear flow

Next we investigate the effects of an external flow fie
such as a shear flow. As the shear stress deforms the do
structure, it will cause a stretching of the block copolym
chain. Thus we expect that the external shear flow will
hance the effects of the perturbation terms. We performe
series of simulation runs on the ordering processes und
simple shear flow. In this case, the left-hand side of the eq
tion of motion ~35! is modified as@25#

]

]t
X~r ,t !⇒ ]

]t
X~r ,t !1¹•@v~r ,t !X~r ,t !#. ~40!

As we did in the simulations described in Sec. III C, w
neglect the contribution from the hydrodynamic interacti
between composition fluctuations at distant points and
assume that the velocity fieldv(r ,t) is given only by the
external shear flow that has the form

v~r ,t !5„ġ~y,t !y,0…, ~41!

where ġ(y,t) is the shear rate. The FFT technique that
used in our simulation requires the periodic boundary con
tion @33#. In order to make the shear flow~41! match the
periodic boundary condition, we use the temporary and s
tially periodic shear flow

ġ~y,t !5ġ0sin~2py/Ly!sin~vt !, ~42!
s

o
y
ot
e
e

,
ain
r
-
a

r a
a-

e

s
i-

a-

whereġ0 is a constant,Ly is the side length of the system i
the y direction, andv is the frequency of the temporal os
cillation of the shear flow.

In Fig. 4 we show the temporal evolution of the chara
teristic wave number̂k(t)& for the same system as in Fig
2~a!, where an external shear flow with various frequencie
imposed. The parameters characterizing the shear flow
taken to bev5 1.0, 0.5, 0.2, and 0.1 for Figs. 4~a!, 4~b!,
4~c!, and 4~d!, respectively, whileġ050.1 is kept constant
The oscillations of the curves are due to the external perio
shear~42!. Comparing Fig. 4~a! with Fig. 2~a!, one recog-
nizes that the shear flow with a high frequencyv51.0 does
not give appreciable effects on the phase-separation dyn
ics. In this case, as the frequencyv is so large that the effect
of the stretching of the block copolymer chains are not
cumulated enough to make the perturbation effects
hanced. On the other hand, when we use a shear flow
smaller frequencyv as shown in Figs. 4~b!–4~d!, the effect
of chain stretching becomes important. In Fig. 4~b! we rec-
ognize that the case with the perturbation terms~dashed
curve! relaxes much faster than the case without the per
bation terms~solid curves!. In Fig. 4~c! the systems show
complicated behavior that results from the competition
tween the external shear deformation and the internal re
ation due to the segment diffusion. Finally, in the case w
the smallest frequency@Fig. 4~d!#, the system with the per
turbation terms~dashed curve! relaxes to a final domain
structure that is different from that of the system without t
perturbation terms~solid curve!. In this case, the final do
main structure of the case with the perturbation ter
~dashed curve! is an almost regular lamellar structure
which the lamellar layers are aligned in the direction para
to the external shear flow. Thus the extra relaxation~pertur-
bation terms! associated with the chain stretching enhan
the relaxation of the defects in the lamellar domain str
tures. These results indicate that the effect of the change
the chain conformation is enhanced by the external sh
deformation and the defects in the domain structure re
much faster.

E. Intuitive explanation of the simulation results

The simulation results presented in the previous subs
tions show that the changes in the chain conformation giv
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non-negligible contribution to the ordering dynamics that
celerates the growth of domains. This acceleration of
domain growth can be understood by considering the r
tionship between the chain conformation and the hopp
range of the kinetic kernelL. When the phase separatio
proceeds from the initial uniform state, composition fluctu
tions with a characteristic length scale ofj emerge. Such
composition fluctuations are described by nonzero order
rameterX(r ), where regions withX.0 and regions with
X,0 correspond to theA domains andB domains, respec
tively. As the A subchain and theB subchain of the block
copolymer are attracted by theA domain and theB domain,
the block copolymer chain is stretched when there is a g
dient of the order parameterX(r ). Equations~8!–~10! indi-
cate that the characteristic hopping range of the kinetic k
nel is given by the end-to-end distance of each subch
Thus the hopping range of the kinetic kernel is enlarg
when the block copolymer chain is stretched due to the lo
gradient of the order parameter. This enlargement of the h
ping range is expressed by the last term on the right-h
side of Eq.~28!. ~The perturbation term witĥH1

2&0 in the
first term is merely a normalization factor over the ent
system and it does not have a local nature.! The enlargemen
of the hopping range makes the segments easier to diff
which accelerates the phase separation and accelerate
relaxation of the defects in the domain structures, the la
effect being important in the ordering dynamics under
shear deformation shown in Fig. 4.

IV. CONCLUSION

In this paper we investigated the effects of the change
the chain conformation that are introduced into the tim
dependent Ginzburg-Landau-type equation of mot
through a perturbation expansion of the nonlocal kinetic
efficient around the Gaussian conformation. By compu
simulations, we found non-negligible effects of the change
the chain conformation on the relaxation dynamics of
microphase-separated domain structures. This result sh
the importance of including the microscopic informatio
such as the chain conformation, into the macroscopic mo
based on the continuum density variables.

An experimental check of the results presented in t
work is rather difficult because the experimental data alw
contain the correction effects from the deformation of t
polymer chains that are discussed in Sec. III. One poss
way to check the deformation effect is a precise quantita
comparison between the experimental data and the resu
numerical simulations where the chain deformation effe
are taken into account. In order to construct a model that
be used for this purpose, one should rely on a direct
rigorous numerical calculation of the path integral that
coupled with the time-dependent Ginzburg-Landau-ty
model. Such a trial is now under way@22#.
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APPENDIX: CALCULATION
OF THE PERTURBATION EXPANSION

In this appendix, we present the details of the perturbat
expansion in deriving Eq.~28!. We expand Eq.~27! in a
power series inH1 and retain terms up to second order. Th
we obtain

Ptt8~r ,r 8!5n0@^d„r ~t!2r …d„r ~t8!2r 8…&0

2b^d„r ~t!2r …d„r ~t8!2r 8…H1&0

1 1
2 b2^d„r ~t!2r …d„r ~t8!2r 8…H1

2&0

1o~H1
3!#/@12b^H1&0

1 1
2 b2^H1

2&01o~H1
3!#, ~A1!

where ^ &0 is the average over the Gaussian chain wh
Hamiltonian is given byH0.

It is easy to show that

^H1&050, ~A2!

which originates from the symmetric composition of th
block copolymer under consideration. Using this result, E
~A1! can be rewritten as

Ptt8~r ,r 8!5n0^d„r ~t!2r …d„r ~t8!2r 8…&0

2n0b^d„r ~t!2r …d„r ~t8!2r 8…H1&0

1 1
2 n0b2@^d„r ~t!2r …d„r ~t8!2r 8…H1

2&0

2^d„r ~t!2r …d„r ~t8!2r 8…&0^H1
2&0#

1o~H1
3!. ~A3!

We introduce the Fourier transform of any functions of t
form R(r ) andP(r ,r 8) by

R~q!5F@R~r !#~q!5E drR~r !exp@ iq•r #,

P~q,q8!5F@P~r ,r 8!#~q,q8!5E drE dr 8P~r ,r 8!

3exp@ i ~q•r1q8•r 8!#. ~A4!

Then, we find

^H1
2&05

1

~2p!dV
E dquc~q!u2F 12N

b2q212S 6

b2q2D 2



at

tic
to

56 3249EFFECTS OF CHANGES IN THE CHAIN . . .
3$hN~q!24hN/2~q!%G , ~A5!

whered is the dimensionality of the system,V is the system
volume, q[uqu, c(q) is the Fourier transform ofc(r ) de-
fined in Eq.~24!, andht(q) is the Fourier transform of the
density correlation function between two segments separ
by t on a Gaussian chain defined ford53 by

ht~q!512exp~2 1
6 tb2q2!. ~A6!

The other terms in Eq.~A3! are very complex. Using the
definitions of the Fourier transform in Eq.~A4!, we can re-
write Eq. ~A3! as

Ptt8~q,q8!5
n0~2p!d

V S 12
1

2
b2^H1

2&0D d~q1q8!hut2t8u~q!

2
n0b

~2p!dItt8~q,q8!1
n0b2

2~2p!2d
Jtt8~q,q8!

1o~H1
3!, ~A7!

whereht , Itt8(q,q8), andJtt8(q,q8) are defined by

ht~q!5exp@2 1
6 tb2q2#,

Itt8~q,q8!5F@^d„r ~t!2r …d„r ~t8!2r 8…H1&0#~q,q8!,

Jtt8~q,q8!5F@^d„r ~t!2r …d„r ~t8!2r 8…H1
2&0#~q,q8!.

~A8!

Substituting Eq.~A7! into Eqs.~14! and~15! and performing
some straightforward algebra using the Gaussian statis
we find that only the following quantities are contributing
Ptt8(q,q8):

I00~q,q8!52INN~q,q8!52
1

VE dkc~k!d~q1q82k!

3I 2S 0,2k;
N

2 D ,

I0N~q,q8!52IN0~q,q8!5
1

VE dkc~k!d~q1q82k!

3I 2S 2q,q8;
N

2 D ,

I~N/2!~N/2!~q,q8!50,

I0~N/2!~q,q8!52IN~N/2!~q,q8!

52
1

VE dkc~k!d~q1q82k!

3F I 1S 2q,q8;
N

2 D2hN/2~q!I 1S 0,k;
N

2 D G ,
ed

s,

I~N/2!0~q,q8!52I~N/2!N~q,q8!

52
1

VE dkc~k!d~q1q82k!

3F I 1S 2q8,q;
N

2 D2hN/2~q8!I 1S 0,k;
N

2 D G ,
~A9!

and

J00~q,q8!5JNN~q,q8!5
2

~2p!dVE dkE dk8c~k!c~k8!

3d~q1q82k2k8!J~2k2k8,2k,0;N!,

J0N~q,q8!5JN0~q,q8!5
2

~2p!dVE dkE dk8c~k!c~k8!

3d~q1q82k2k8!J~q82k2k8,q82k,q8;N!,

J~N/2!~N/2!~q,q8!5
2

~2p!dVE dkE dk8c~k!

3c~k8!d~q1q82k2k8!

3F2J1S 0,k8,k1k8;
N

2 D
1

1

2
J2S k,0,k8;

N

2 D G ,
J0~N/2!~q,q8!5JN~N/2!~q,q8!5

2

~2p!dVE dkE dk8c~k!

3c~k8!d~q1q82k2k8!

3FJ1S 2q,k82q,q8;
N

2 D
1hN/2~q!J2S 0,k8,k1k8;

N

2 D
1

1

2
J3S 2q,k2q,2k8;

N

2 D G ,
J~N/2!0~q,q8!5J~N/2!N~q,q8!5

2

~2p!dVE dkE dk8c~k!

3c~k8!d~q1q82k2k8!

3FJ1S 2q8,k82q8,q;
N

2 D
1hN/2~q8!J2S 0,k8,k1k8;

N

2 D
1

1

2
J3S 2q8,k2q8,2k8;

N

2 D G , ~A10!
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where we defined the functions

I 1~q1 ,q2 ;N!5
6

b2~q1
22q2

2!
@hN~q1!2hN~q2!#,

I 2~q1 ,q2 ;N!5
6

b2~q1
22q2

2!
@hN~q1!2hN~q2!#2,

J1~q1 ,q2 ,q3 ;N!5
6

b2~q1
22q2

2!
@ I 1~q1 ,q3 ;N!

2I 1~q2 ,q3 ;N!#,

J2~q1 ,q2 ,q3 ;N!522I 1~q1 ,q2 ;N!I 1~q2 ,q3 ;N!,

J3~q1 ,q2 ,q3 ;N!522I 1~q1 ,q2 ;N!I 1~0,q3 ;N!,

J~q1 ,q2 ,q3 ;N!5J1~q1 ,q2 ,q3 ;N!1J2~q1 ,q2 ,q3 ;N!.
~A11!

ThenL(q,q8) given in Eq.~14! is rewritten as

L~q,q8!5
n0~2p!d

2V S 12
1

2
b2^H1

2&0D $4hN/2~q!2hN~q!%

3d~q1q8!1
n0b2

4
@J00~q,q8!12
l

n

-

T

s

, J
3J~N/2!~N/2!~q,q8!1J0N~q,q8!22J0~N/2!~q,q8!

22J~N/2!0~q,q8!]

2
n0b2V

2~2p!dE dk
1

hN~k!
@I00~q,k!22I~N/2!0~q,k!

2I0N~q,k!#@I00~2k,q8!22I0~N/2!~2k,q8!

1I0N~2k,q8!#. ~A12!

This expression ofL is not simple enough to be used fo
computer simulations. In order to simplify it, we adopt
long-wavelength approximation where only the leadi
terms in the expansion of the perturbation terms in pow
series inq andq8 are retained. Then we obtain

L~q,q8!5
n0~2p!d

2V S 12
1

2
b2^H1

2&0D $4hN/2~q!2hN~q!%

3d~q1q8!1
n0b2

4~2p!dV

b4N4

216

3E dkc~k!c~q1q82k8!

3$k•~2k1q1q8!%~q•q8!1•••, ~A13!

where^H1
2&0 is now expanded in wave number to give E

~31!. Substituting this equation into Eq.~11!, we finally ob-
tain Eq.~28!.
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